Real-space renormalization group for spectral properties of hierarchical networks
نویسندگان
چکیده
منابع مشابه
Time-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملtime-dependent real-space renormalization group method
in this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent hamiltonians. we drive the time-dependent recursion relations for the renormalized tight-binding hamiltonian by decimating selective sites of lattice iteratively. the formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملFailure thresholds in hierarchical and euclidian space by real space renormalization group
2014 The scaling of the failure strength as a function of the size L and the influence of disorder in hierarchical and Euclidian systems are discussed within a real space renormalization group (RG). In hierarchical models for which the RG is exact, two universality classes are found : for « small disorder », the system is strong and its strength increases as a power of its size whereas for « la...
متن کاملA nonperturbative Real-Space Renormalization Group scheme
Based on the original idea of the density matrix renormalization group (DMRG) [1], i.e. to include the missing boundary conditions between adjacent blocks of the blocked quantum system, we present a rigorous and nonperturbative mathematical formulation for the realspace renormalization group (RG) idea invented by L.P. Kadanoff [2] and further developed by K.G. Wilson [3]. This is achieved by us...
متن کاملRandom Geometries and Real Space Renormalization Group
A method of " blocking " triangulations that rests on the self-similarity feature of dynamically triangulated random manifolds is proposed and used to define the renormalization group for random geometries. As an illustration, the idea is applied to pure euclidean quantum gravity in 2d. Generalization to more complicated systems and to higher dimensionalities of space-time appears straightforwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2015
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/48/41/415001